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Abstract

Predictions for work removal based on physical models have been reported in electrical discharge machining (EDM) in recent years.
However, when the change of polarity has been considered, few models have succeeded in giving consistent predictions. In this study,
comparison of modeling the material removal rate of the work for various materials considering the change of polarity among six different
neural networks together with a neuro-fuzzy network have been illustrated. The six neural networks are namely, the logistic sigmoid multi-
layered perceptron (LOGMLP), the hyperbolic tangent sigmoid multi-layered perceptron (TANMLP), the fast error back-propagation
hyperbolic tangent multi-layered perceptron (error TANMLP), the radial basis function networks (RBFNs), the adaptive TANMLP, and the
adaptive RBFN. Also, the neuro-fuzzy network is the adaptive-network-based fuzzy inference system (ANFIS). Trained by the same
experimental data selected with the method of design of experiment (DOE), the parameters of the above models have been optimized for
further analysis. Based on the conclusions from the comparisons at checking the error among the network models, the best is the ANFIS
with Bell-shape membership functions. Also, it can be concluded that the further experimental results have shown the accurate predictions

based on the ANFIS model. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Electrical discharge machining is a non-traditional
machining process for metal removing based on the nature
that no tool force is generated during machining. The removal
of metals in the EDM process is associated with the erosive
effects occurring under a series of successive electrical sparks
generating between the tool and the workpiece with electric
potential submerged in a dielectric liquid environment. The
process is widely used for manufacturing tools, dies, and other
difficult-to-cut parts. Although, the EDM process has been
accepted as the standard machining process in the tools, dies,
and molds industry, the process is still treated as the so-called
“know-how” process. Therefore, the tuning of EDM process
variables to obtain energy efficiency and part accuracy has
been empirical and difficult. Today, even though up-to-date
computer technology has been applied, the EDM process is
one of the expertise-demanding processes in the industry.
From the literature, the exact mechanism of metal erosion
during sparking is still debatable even based on the well-
known physical laws. However, complex thermal conduction
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behavior may be widely accepted as the principal mechanism
of metal erosion. This is why the models for correlating the
process variables and material removal rate (MRR) are hard to
be established accurately.

In the past decade, neural networks have been shown to be
highly flexible modeling tools with capabilities of learning
the mathematical mapping between input variables and
output features for non-linear systems [1,2]. The superior
performance of neural networks for modeling machining
processes have been published elsewhere [3-17]. In the
literature, multi-layer perceptrons based on the back-propa-
gation (BP) technique have been employed for monitoring or
modeling selected processes. For example, Rangwala and
Dornfeld [3], Masory [4], Tansel et al. [5], and Tarng et al.
[6,7] used BP or adaptive resonance theory (ART2) on the
neural networks for monitoring tool wear and breakage in
the turning or drilling process. On the other hand, Tansel et al.
[8], Tarng et al. [9], and Lee et al. [10] also used BP or ART2-
A on the neural networks for detecting and suppressing tool
chatter in the turning or drilling process. Cariapa et al. [11],
Tarng et al. [12,14], Liao and Lin [13], and Lee et al. [15]
applied various neural networks for modeling and predicting
the machining processes. Both Kao and Tarng [16] and Liu
and Tarng [17] employed feed-forward neural networks with
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hyperbolic tangent functions and abductive networks for the
on-line recognition of pulse types in the EDM process. Based
on their results, discharge pulses were identified and then
employed for controlling the EDM process. In the above
literature, the effects of the change of polarity between the
electrode and the work materials were all neglected.

The objective of this paper is to establish a better process
model based on neural networks by comparing the predictions
from different models under the effects of change of polarity
between the electrode and the work materials in the EDM
process. Initially, pertinent process variables affecting the
MRR, namely the polarity of the electrode, the discharge time,
the peak current, and the materials of both the tool and the
workpiece, were screened by making use of the Taguchi
method on design of experiments [ 18]. The DOE experimental
data were later used for training the various process models.
Finally, more experimental verification on the established
process models was conducted, and comparisons among the
models, including a statistical process model, were analyzed.

2. Neural networks

In past decades, numerous studies have been reported on
the development of neural networks based on different
architectures [1,2,19-21]. In general, neural networks are
characterized by their architecture, activation functions, and
learning algorithms or rules [2]. Each type of neural net-
works would have its own input—output characteristics, and
therefore it could be applied only on some specific pro-
cesses. Based on the recent developments in fuzzy theory, a
fuzzy inference system can map a single given input to

Input Layer

Hidden Layer

multi-outputs in a non-linear domain. Typically, the fuzzy
inference system consists of membership functions, fuzzy
logic operators, and prescribed if—then rules published else-
where in the literature. In 1993, Jang et al. [22] introduced
the adaptive-network-based fuzzy inference system
(ANFIS) used in this paper. It is a very efficient system
for solving ill-defined equations involving the automatic
elicitation of knowledge expressed only by the if—then rules.
Based on the authors experiences, ANFIS is only applicable
for the cases of less than seven inputs and one output.

In this study, six neural networks and a neuro-fuzzy
network are employed for modeling the MRR in the
EDM process. All the networks are defined as follows.

1. Logistic sigmoid multi-layered perceptron (LOGMLP).

2. Hyperbolic tangent sigmoid multi-layered perceptron

(TANMLP).

Radial basis function network (RBFN).

4. Fast error back-propagation multi-layered network with
hyperbolic tangent functions (error TANMLP).

5. TANMLP with adaptive learning rate (adaptive
TANMLP).

6. Radial basis function network with adaptive learning
rate (adaptive RBFN).

7. Adaptive-network-based fuzzy inference system.

et

2.1. Architectures

Basically, neural networks are classified based on their
architecture for simplicity. The architecture of the multi-
layered perceptron networks and the RBFNs are shown in
Figs. 1 and 2, respectively. In the figures, it is noted that the

Output Layer

Fig. 1. Architecture of the multi-layered perceptron networks.
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Fig. 2. Architecture of the RBFNs.

number of hidden layers is critical for the convergence rate
during the training of parameters if the inputs and outputs
have been given. In this study, only one hidden layer has
been used in the multi-layered perceptron networks because
the number of neurons has been assumed to be the most
important parameter. As a result, the number of neurons has
been determined by an optimization method. On the other
hand, the architecture of the ANFIS has been based on
a first-order Sugeno fuzzy inference model, as shown in
Fig. 3. The advantages of the Sugeno structure have been
reported as high computational efficiency, built-in optimal
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and adaptive techniques, and ensured continuity on the
output surfaces [24]. A hybrid learning algorithm for iden-
tification of the near-optimal membership functions and
other rule-based parameters has also been employed here
to represent the desired input—output mappings.

2.2. Activation functions
In the neural networks described in the previous para-

graphs, there are a large number of neurons in the hidden
layers. In the networks, connections among the neuron are
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Fig. 3. Architecture of the ANFIS networks with multi-input Sugeno fuzzy model plus multi-rule (two membership functions at each input).
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based on signal links with associate weightings. Each neuron
is represented by its internal state, namely activation,
which is functionally dependent on inputs. Sigmoid func-
tions (S-shaped curves), such as logistic functions and hyper
bolic tangent functions, are commonly adopted for the
activation functions. Usually, a neuron transmits its activa-
tion signal to other neurons for information exchange. For
comparison, several different activation functions have been
employed in this study, being described in the following
paragraph.

The activation function of LOGMLP is a continuous
logistic function given as follows:

1
floet) = —————— ey

1 +exp(—/net)
where 4 > 0 is proportional to the gain which determines the
steepest direction of the continuous function f{net) near
net = 0. Similarly, the TANMLP and error TANMLP net-
works have continuous hyperbolic tangent functions defined
as follows:

2

f(net) = tanh (i “et) _ 1 —exp(~Znet)

2 ) 1+exp(—/inet)

In RBFN networks, the Gaussian distribution function is
used as the activation function defined as follows:

F(net) = £(X; Cis 07) = e~ (¥-GF/20D) 3)
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Fig. 4. Network algorithm based on the Gradient descent method adopted
in the LOGMLP, TANMLP, and adaptive TANMLP scheme.
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where A is a weight factor that define a variety of alternative
objective functions between the two extremes
correspondingtoA=0and A =1, A€ [0,1],
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Fig. 5. Network algorithm based on the fast error back-propagation adopted in the error TANMLP scheme.
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where C; is the center of the Gaussian distribution and ¢, the
standard deviation of the Gaussian distribution. In the
ANFIS, one membership function has been the Gaussian,
but the other has been the Bell-shape function defined
as follows:

1
L+ (X = ci) fai ™

f(net) :f(X, ai,bi,c,-) = (4)

where the {a;, b;, c;} is a parameter set. Because these
parameters determine the x coordinates of the two corners
underlying the Bell-shape function, the parameter b; is
usually positive. (If b; is negative, the shape of this function
looks like an upside-down bell.)

2.3. Algorithms

During the training of the neural networks, it is critical to
choose the appropriate algorithms because the efficiency
and the convergence are primarily the key issue at this stage.
This means the algorithms are the selection rules for the
weights in order to accomplish the desired mapping between
the inputs and the outputs. Based on the least-squares
approach, the quadratic error function between the actual
outputs and the network outputs is expressed by

E=YE :Z%(Tprp)z 5)
p p

where T, is the target values and Y, the outputs of the neural
networks.

In this study, only supervised network algorithms, such as
the delta learning rule (i.e. gradient descent) with momen-
tum, the fast error back-propagation learning rule with
momentum, and a hybrid of the delta learning and the
least-squares estimator were employed the three network
algorithms are shown in Figs. 4-6, respectively. However,
the ANFIS networks have used a special hybrid learning
algorithm to update their parameters. Considering the con-
vergence conditions, both the least-squares method and the
back-propagation gradient descent method have been
employed for linear and non-linear parameters, respectively.
In all the algorithms, an error measure for final check,
which is a normalized root-mean-square of error (RMSE),
is defined as follows:

1 1 )
RMSE = —— (T, - Y, 6
length(T, —Y,) ; 2( r=Y) ©)

where T, is the target vector (i.e. experimental values) and
Y, is the predicted vector (training values). As for the
adaptive algorithms, the values of the learning coefficients
have to be adequately increased when the RMSE of the
current epoch is smaller than the RMSE of the previous
epoch. Otherwise, the values have to be adequately
decreased when the RMSE of the current epoch is larger
than the RMSE of the previous epoch.

Forward pass:
Hidden layer:
H,=f(X)
Output layer:

Y, = ZkaHJ
J
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1
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JE
AC, =-np——+aC
‘ qa’C old

where 7 is the learning rate, 7 € (0,1],and
a is the momentum coefficient, ¢ € [0,1].
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Fig. 6. Network algorithm based on the combination of the Gradient
descent method and least-squares estimator adopted in the RBFN and
adaptive RBFN networks.

3. Experimental verification

A schematic drawing of the experimental apparatus and a
photograph of the EDM machine attached with a personal
computer are shown in Fig. 7. All the experiments were
conducted on a Model Mold Maker III CNC EDM machine,
made by Sodick in Japan. The EDM machine was attached
with a MARK XI pulse charge generator and a computer-
controller to produce rectangular-shaped current pulses
during discharging. Throughout the experiments, the dielec-
tric fluid was SPE oil produced by Castrol. In particular, for
better control of the dielectric environment, the fluid was
kept in a stainless steel container during the experiments.
The MRR data were later measured by making use of an
A200S-D electronic micro-weight balance, made by Sartor-
ius in Germany.

In this study, three different pure metals were employed
for the experimentation. While copper was used as the tool
(the upper electrode), aluminum and iron were used as the
workpiece (the lower electrode). In all the experiments, the
pertinent process parameters and their levels for each set of
the experiments are listed in Table 1. Also, the physical
characteristics together with the mechanical dimensions of
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Fig. 7. The experimental apparatus: (a) the schematic drawing; (b) photograph of the machine and the personal computer.

Table 1
Pertinent process parameters and values for the experiments
Symbol Factor Level
1 2 3 4 5
PL Polarity of upper electrode - +
ON Discharge time (us) 20 30 60 100
I, Main power peak current (A) 12 22.5 30 39 48
An Tool material (upper electrode) Cu
Ca Work material (lower electrode) Al Fe
OFF Quiescent time (ps) 60
A% Main power voltage (V) 90
NY% Servo standard voltage 2
Table 2

Physical characteristics and mechanical dimensions of the tool and the work

Materials Composition (%) Density (kg/m?) Machined roughness Rp,.x (Lm) Dimensions (mm?)
Tool

Cu >99.95 8896.6 4.02 $9.5 x 50
Workpiece

Fe >99.9 7870 1.08 $20 x 12

Al >99.5 2699 2.76 $20 x 12

the tool and the workpieces are tabulated in Table 2. In order
to produce adequate data for model training, 80 sets of
experimental conditions were scheduled on the machine.
Each set of the conditions was measured by running 40
consecutive tests both in the case of copper—aluminum and
copper—iron combinations.

Known for its capabilities in establishing the neural net-
works models, MATLAB with associate toolboxes, copy-
righted by MathWork in the USA, was used for coding the
algorithms. Also, with the help of Pentium III processors on
a personal computer, the programs could be executed and
finished in a few minutes.

4. Results and discussion

Before applying the neural networks for modeling the
EDM process, first there was the need to decide the archi-
tecture and the topology of the networks; for example, the
number of hidden layers and the number of neurons in each
layer in the networks. Based on the previous experience
from the work on the semi-empirical model [24], five inputs
and one output in the networks would suffice for the interests
in this study. Therefore, the number of neurons in the input
and output layer should be set to five and one, respectively.
Also, the back-propagation architecture with one hidden
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layer is enough for the majority of the applications, because
it can form arbitrary mapping between a set of given inputs
and outputs [2]. In this study, one hidden layer for the neural
networks was used. For determining the optimal number of
neurons in the hidden layer, a procedure was used to
optimize the number of neurons in the hidden layer for
various neural networks based on the results from 5000
epochs as shown in Fig. 8. By comparing the results, the
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number of hidden neurons were found to be 25 for the
LOGMLP, 12 for the TANMLP, 12 for the RBFN, 30 for
the error TANMLP, 50 for the adaptive TANMLP, and 12 for
the adaptive RBFN. It is noted that the RBFN and the
adaptive RBFN networks have less neuron than the others.
Also, the final results for the two networks versus the
various numbers of hidden neurons are shown and compared
in Tables 3 and 4. In these two tables, the prediction, the
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Fig. 8. Comparison of the average error among various network models with various numbers of hidden nodes.
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Table 3

Final results of the MRR model based on the RBFN; number of hidden nodes is the main variable

Hidden nodes

3 6 9 12 15

Epoch in optimal 5000 5000 443 5000 2182
RMSE 0.03164 0.02193 0.05316 0.01751 0.01967
Running time (s) 356 375 465 774 454
Average training error (%) 125.37 112.15 2492.92 117.96 70.53
R? 0.9595 0.9805 —0.1912 0.9876 0.9843
Average checking error (%) 74.61 93.55 356.18 24.71 67.22
Table 4
The same as Table 3, except for the adaptive RBFN

Hidden nodes

3 6 9 12 15
Epoch in optimal 5000 5000 4998 5000 4998
RMSE 0.02598 0.02514 0.03526 0.01967 0.01820
Running time (s) 362 372 404 816 435
Average training error (%) 52.31 93.72 310.59 75.84 796.94
R’ 0.9727 0.9744 0.9481 0.9843 0.6709
Average checking error (%) 38.82 77.65 129.72 25.93 208.2

training and the checking errors, are defined as follows:

errorin % =

experimental results — predictions

experimental results

Table 5

x 100

)

It should be noted that the checking errors of the best cases
are 24.71 and 25.93% with 12 hidden neurons for both the
RBFN and the adaptive RBFN, respectively.

Based on the user’s guide, there are eight different
membership functions supported in the MATLAB fuzzy

Number of intrinsic parameters for the ANFIS with various membership functions

Membership function Two Bell MFs Two Gaussian MFs Three Bell MFs Three Gaussian MFs
Number of inputs 5 5 5 5
Number of nodes 92 92 524 524
Number of linear parameters 192 192 1458 1458
Number of non-linear parameters 30 20 45 30
Total number of parameters 222 212 1503 1488
Number of training data pairs 80 80 80 80
Number of checking data pairs 10 10 10 10
Number of fuzzy rules 32 32 243 243
Table 6
Final results of ANFIS model with two Bell membership functions; the bold-face column indicates the best results
Epochs
1 20 40 60 120 250 350 450
Final RMSE 0.02434 0.01662 0.01190 0.00801 0.00595 0.00527 0.00509 0.00497
Running time (s) 1.26 25 49 74 146 296 411 525
Average training error (%) 22.16 21.86 24.13 12.60 11.01 10.83 10.81 10.80
R? 0.9760 0.9888 0.9943 0.9974 0.9986 0.9989 0.9990 0.9990
Average checking error (%) 72.81 36.39 21.24 48.23 48.26 43.02 41.76 41.11
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logic toolbox [23]. In this study, two and three of both the
Bell and the Gaussian membership functions were employed
for ease of manipulation. The characteristics of these
types of MF are shown in Table 5. Evidently, the computer

119

run-time will increase with the increase in the number of
membership function because the nodes, the parameters, and
the if—then rules grow exponentially. From Tables 6-9, the
final results of the ANFIS model versus various epochs

Table 7
The same as in Table 6, except with two Gaussian membership functions

Epochs

1 11 20 40 120 250 350 450
Final RMSE 0.01999 0.01621 0.01381 0.01007 0.00850 0.00833 0.00820 0.00818
Running time (s) 1.26 13 23 45 137 287 425 546
Average training error (%) 18.89 17.31 18.26 45.99 71.86 71.17 69.73 68.83
R 0.9838 0.9894 0.9923 0.9960 0.9971 0.9972 0.9973 0.9973
Average checking error (%) 44.74 32.29 26.33 45.77 82.44 82.84 80.91 78.68
Table 8
The same as in Table 6, except with three Bell membership functions

Epochs
1 20 40 80 120 140 160 250
Final RMSE 0.01193 0.00476 0.00300 0.00253 0.00185 0.00155 0.00130 0.00109
Running time (s) 119 2251 4485 9015 13524 15692 18041 28068
Average training error (%) 11.77 8.43 6.76 6.53 7.39 7.88 6.69 6.01
R? 0.9942 0.9991 0.9996 0.9997 0.9999 0.9999 0.9999 0.9999
Average checking error (%) 89.91 50.04 46.05 29.97 28.98 25.58 30.97 30.92
Table 9
The same as in Table 6, except with three Gaussian membership functions
Epochs
1 5 20 40 80 120 180 250

Final RMSE 0.0084 0.00668 0.00389 0.00311 0.00293 0.00285 0.00281 0.00279
Running time (s) 185 576 2281 4569 9141 13281 20274 27993
Average training error (%) 9.92 9.27 7.55 6.84 6.78 6.79 6.81 6.83
R? 0.9971 0.9982 0.9994 0.9996 0.9997 0.9997 0.9997 0.9997
Average checking error (%) 34.27 35.61 46.26 47.52 42.50 40.92 39.98 39.87

Table 10

Final results of the MRR model based on various network models; Cu—Al and Fe are employed for the tool and work materials, respectively

LOGMLP TANMLP RBFN ERROR TANMLP Adaptive TANMLP
Hidden nodes 25 12 12 30 50
Epochs 5000 5000 5000 5000 5000
Final RMSE 0.05229 0.04180 0.01751 0.05601 0.06651
Running time (s) 385 415 774 517 609
Average training error (%) 62.73 109.19 117.96 120.30 196.12
R? 0.8893 0.9292 0.9876 0.8795 0.8209
Average checking error (%) 91.24 96.05 24.71 102.56 116.26
Adaptive RBFN ANFIS ANFIS ANFIS ANFIS

(two Bell MFs)

(two Gaussian MFs)

(three Bell MFs)

(three Gaussian MFs)

Hidden nodes 12

Epochs 5000 40

Final RMSE 0.01967 0.01190
Running time (s) 816 50
Average training error (%) 75.84 24.12

R 0.9843 0.9942
Average checking error (%) 2593 21.24

20 140 1
0.01381 0.00155 0.0084
23 15692 185
18.26 7.88 9.92
0.9923 0.9999 0.9971
26.33 25.58 34.27
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Comparison of training errors between RBFN and ANFIS

0.055

0.05

0.045

0.04

0.035

0.03

0.025

Root Mean Square Error Curves

0.02

0.015

1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Training Epochs

Fig. 9. Comparison of training errors between the RBFN and the ANFIS model: the ANFIS model is seen to be much better than the RBFN model.

corresponding to each of the cases are tabulated, with bold- as follows:
face columns indicating the best results. They are 40 epochs 5 @ by
for two Bell MFs, 20 for the two Gaussian MFs, 140 for the V= A & ( I, ) (TonHv>

three Bell MFs, and one for the three Gaussian MFs. These H\l,/ 21 \g!/2p1/203/2 o

cases were later used for predictions on the MRR together c

with the two neural networks models (i.e. RBFN and « £ ( Ja)dl (8)
adaptive RBFN) and the semi-empirical model [24] shown pocszl/ 2

Case: MRR on Cu-Al,Fe under ANFIS: Epochs =40
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Fig. 10. Comparison between the measured and predicted MRR results based on the ANFIS model by making use of two Bell membership functions.
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Variation of Step Sizes
T T

0.022

0.02

0.018

Step Sizes

0.016

0.014

0012

0.01 5 10 15

20 25 30 35 40

Training Epochs

Fig. 11. Plots of step size for convergence versus training epochs for the ANFIS model.

where V is the MRR; A a constant which is a function of
the material; I, the peak current; 7., the discharge time;
E the input energy to work; o = x/pC, the thermal diffu-
sivity; x the thermal conductivity; C, the specific heat
capacity; p the density; o the electric conductivity; H, the
latent heat of evaporation; and J, = T,C, /H, the Jacob

MRR Difference Distribution

number. This semi-empirical model has been established
by employing dimensional analysis based upon pertinent
process parameters screened by the design of experiments
method.

Together with all the models, Table 10 shows the final
results for MRR for comparison. It is noted that the best of

MRR Difference (mm?/min)

e

10 20 30

40 50 60 70 80

Training Data

Fig. 12. Plots of MRR differences calculated based on Fig. 10 versus the number of training data after the training procedure.
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these model, the ANFIS with two Bell membership func-
tions. Compared to the RBFN model, the ANFIS model has
faster convergence and better performance, as shown in
Fig. 9. For detailed illustration, the final parametric results
of the ANFIS model are shown from Figs. 10-13. In these
figures, the minimum average checking error is 21.24%. In
Fig. 12, larger training differences are observed from data set
1-40 because the copper—aluminum combination has a
higher MRR than the combinations.
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As a further step for verification, experiments were
scheduled with process parameters set to the border on
the training process window. The comparison among all
the models is shown in Table 11 for illustration. In particular,
the semi-empirical, the RBFN, the adaptive RBFN, and the
ANFIS with two Bell MFs were plotted on the same scale,
as shown in Fig. 14. It is noted that the ANFIS model is the
still the best, with 16.33% checking error. That means
that the predictions of MRR in the EDM process by making
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Fig. 13. Final values of the membership functions for the ANFIS inputs after the training procedure.
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Table 11
Experimental verification based on the different process parameters indicated in the note used for the training procedure with three different network models
Case Materials Experiment Semi-empirical Error (%) Adaptive Error  ANFIS Error ANFIS Error
model RBEN (%) (two Bell MFs) (%) (three Bell MFs) (%)
1 Cu(+):Al(—)* 17.0111 21.3676 25.61 16.2475 449  13.8762 18.43  20.0963 18.14
2 Cu(—):Al(+)"  3.203 47611 48.65 4.0318  25.87 2.9381 8.27 3.6503 13.97
3 Cu(+):Al(—)"  36.797 34.8231 5.36 28.8421  21.62  23.8915 35.07  29.1847 20.69
4 Cu(—):Al(+)°  3.7048 7.7593 109.44 6.1454  65.88 4.1042 10.78 6.2911 69.81
5 Cu(—):Fe(+)°  0.7497 1.3008 73.51 09610  28.18 0.5216 30.43 0.5732 23.55
6 Cu(+):Fe(—)*  8.399 7.0195 16.42 7.7245 8.03 9.3593 11.43 103924 23.73
7 Cu(—):Fe(+)* 0.5108 2.7309 434.62 04142  18.92 0.4837 5.30 0.6689 30.95
8 Cu(+):Fe(—)° 17.9365 11.4399 36.22 122517  31.69  14.0474 21.68  15.7809 12.02
9 Cu(—):Fe(+)°  0.864 4.4505 415.11 0.7413 14.20 0.8160 5.55 0.9167 6.10
Average error (%) 129.44 24.79 16.33 24.33
*1oN: 1205; 1,:22.5 A Topr: 60s; V =120 V; SV = 2.
b Ton: 12055 1,:30.0 A; topr: 60s; V =120V; SV = 2.
“ToNn : 60s; I,:30.0 A; Topp: 60s; V =120V; SV = 2.
Comparison of MRR among Experiment and Predictions of Various Models
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Fig. 14. Comparison of MRR among the measured values and predictions based on various network models: the ANFIS shows better predictions than the

others.

use of the ANFIS model are in good agreement with the
experimental results.

5. Conclusions

In this paper, six neural models and a neuro-fuzzy
model for MRR in EDM process have been established
and analyzed based on the pertinent machine process para-
meters. The networks, namely the LOGMLP, the TANMLP,
the RBFN, the error TANMLP, the adaptive TANMLP, the
adaptive RBFN, and the ANFIS have been trained and
compared under the same experimental conditions for two

different materials. According to the training results, the
comparison has shown that the ANFIS model is more
accurate than the other models. Also, further experimental
verification have shown that the predictions on the MRR for
extrapolative conditions have reached 16.33% error. As a
result, the MRR in the EDM process including change of
polarity can be predicted with reasonable accuracy.

Based on the previous experience with the semi-empirical
model, it is possible to conclude that the EDM process can
be correctly modeled based on the ANFIS approach even
though the EDM process is well known for its complex and
stochastic nature. The present study has explored a new
process model, which includes all the pertinent process
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parameters, for reasonably predicting the MRR. In other
words, the exact machining time can be better controlled
on the shop floor in practical applications. Conclusively
speaking, an effective modeling tool for the MRR in the
EDM process has been established with promising potential
applications in industry.
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